

Tropical methods for Teichmüller spaces

Victoria Schleis

Durham University

November 2025

Tropical Geometry

General Idea

Let X be an algebraic-geometric object (curve, surface, variety, scheme,...).

General Idea

Let X be an algebraic-geometric object (curve, surface, variety, scheme,...).
→ Construct combinatorial analogue $\text{trop}(X)$ of X .

General Idea

Let X be an algebraic-geometric object (curve, surface, variety, scheme,...).

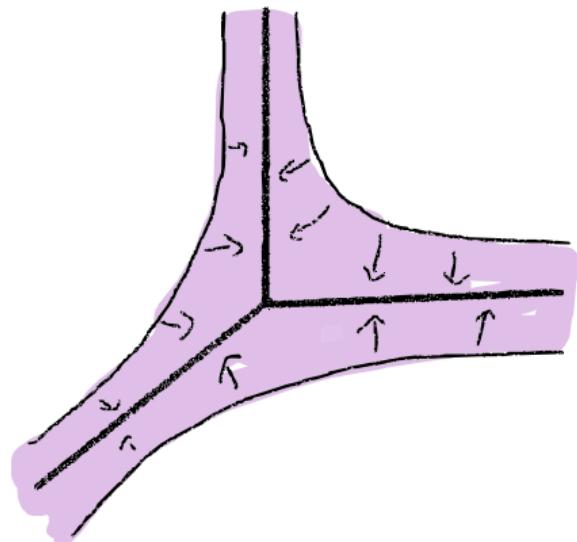
- Construct combinatorial analogue $\text{trop}(X)$ of X .
- Study combinatorial properties of $\text{trop}(X)$.

General Idea

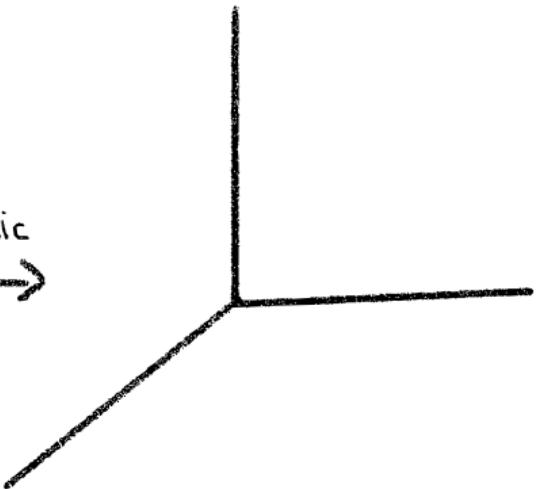
Let X be an algebraic-geometric object (curve, surface, variety, scheme,...).

- Construct combinatorial analogue $\text{trop}(X)$ of X .
- Study combinatorial properties of $\text{trop}(X)$.
- Recover algebraic properties of X from these combinatorial properties.

From curves to limits



logarithmic
limit



Algebraic foundations

Idea: Emulate behavior of exponents under the limit

Definition

The *tropical semiring* \mathbb{T} is the tuple $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ where

Algebraic foundations

Idea: Emulate behavior of exponents under the limit

Definition

The *tropical semiring* \mathbb{T} is the tuple $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ where

- $a \odot b = a + b$ (using $t^a \cdot t^b = t^{a+b}$)

Algebraic foundations

Idea: Emulate behavior of exponents under the limit

Definition

The *tropical semiring* \mathbb{T} is the tuple $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ where

- $a \odot b = a + b$ (using $t^a \cdot t^b = t^{a+b}$)
- The multiplicative identity is 0.

Algebraic foundations

Idea: Emulate behavior of exponents under the limit

Definition

The *tropical semiring* \mathbb{T} is the tuple $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ where

- $a \odot b = a + b$ (using $t^a \cdot t^b = t^{a+b}$)
- The multiplicative identity is 0.
- $a \oplus b = \min(a, b)$.

Algebraic foundations

Idea: Emulate behavior of exponents under the limit

Definition

The *tropical semiring* \mathbb{T} is the tuple $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ where

- $a \odot b = a + b$ (using $t^a \cdot t^b = t^{a+b}$)
- The multiplicative identity is 0.
- $a \oplus b = \min(a, b)$.
- The additive identity is ∞ .

Algebraic foundations

Idea: Emulate behavior of exponents under the limit

Definition

The *tropical semiring* \mathbb{T} is the tuple $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ where

- $a \odot b = a + b$ (using $t^a \cdot t^b = t^{a+b}$)
- The multiplicative identity is 0.
- $a \oplus b = \min(a, b)$.
- The additive identity is ∞ .

From algebraic to tropical

Definition

Let K be a non-archimedean field with valuation. For $f = \sum_{u \in \mathbb{N}^n} c_u x^u \in K[x_1^\pm, \dots, x_n^\pm]$ we define the *tropicalization*

$$\text{trop}(f) = \bigoplus_{u \in \mathbb{N}^n} \text{val}(c_u) \odot x^{\odot u} \in \mathbb{T}[x_1, \dots, x_n].$$

From algebraic to tropical

Definition

Let K be a non-archimedean field with valuation. For $f = \sum_{u \in \mathbb{N}^n} c_u x^u \in K[x_1^\pm, \dots, x_n^\pm]$ we define the *tropicalization*

$$\text{trop}(f) = \bigoplus_{u \in \mathbb{N}^n} \text{val}(c_u) \odot x^{\odot u} \in \mathbb{T}[x_1, \dots, x_n].$$

Example

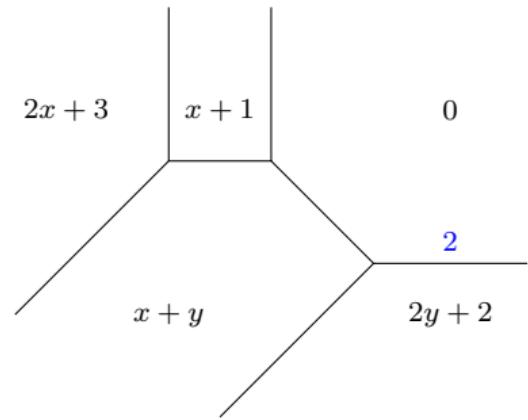
$$\begin{aligned} \text{trop}((t^2 + t^5)y^2 + (4 + t^9)xy + (t^3)x^2 + ty + tx + 1) \\ = 2 \odot y^{\odot 2} \oplus 0 \odot x \odot y \oplus 3 \odot x^{\odot 2} \oplus 1 \odot y \oplus 1 \odot x \oplus 0 \\ = \min\{2y + 2, x + y, 2x + 3, y + 1, x + 1, 0\} \end{aligned}$$

Tropical varieties

Definition

Let $f \in \mathbb{T}[x_1, \dots, x_n]$. The *tropical variety* of f is the set

$$V(f) = \{u \mid \min \text{ in } f(u) \text{ is attained at least twice}\}$$



Subdivisions

Theorem (Kapranov)

Let $f \in K[x_1^{\pm}, \dots, x_n^{\pm}]$. Then $-V(\text{trop}(f))$ is dual to the induced subdivision of $\text{Newt}(f)$ by the valuation of coefficients.

Subdivisions

Theorem (Kapranov)

Let $f \in K[x_1^{\pm}, \dots, x_n^{\pm}]$. Then $-V(\text{trop}(f))$ is dual to the induced subdivision of $\text{Newt}(f)$ by the valuation of coefficients.

$$\text{trop}((t^2 + t^5)y^2 + (4 + t^9)xy + (t^3)x^2 + ty + tx + 1)$$

Subdivisions

Theorem (Kapranov)

Let $f \in K[x_1^{\pm}, \dots, x_n^{\pm}]$. Then $-V(\text{trop}(f))$ is dual to the induced subdivision of $\text{Newt}(f)$ by the valuation of coefficients.

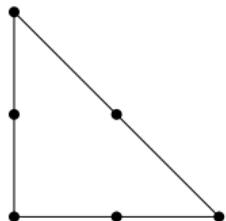
$$\text{trop}((t^2 + t^5)y^2 + (4 + t^9)xy + (t^3)x^2 + ty + tx + 1)$$

Subdivisions

Theorem (Kapranov)

Let $f \in K[x_1^{\pm}, \dots, x_n^{\pm}]$. Then $-V(\text{trop}(f))$ is dual to the induced subdivision of $\text{Newt}(f)$ by the valuation of coefficients.

$$\text{trop}((t^2 + t^5)y^2 + (4 + t^9)xy + (t^3)x^2 + ty + tx + 1)$$

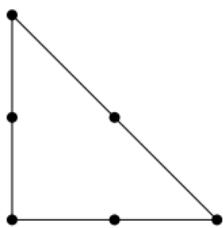
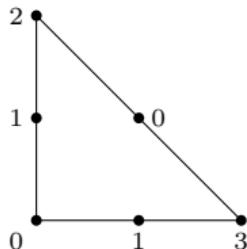


Subdivisions

Theorem (Kapranov)

Let $f \in K[x_1^{\pm}, \dots, x_n^{\pm}]$. Then $-V(\text{trop}(f))$ is dual to the induced subdivision of $\text{Newt}(f)$ by the valuation of coefficients.

$$\text{trop}((t^2 + t^5)y^2 + (4 + t^9)xy + (t^3)x^2 + ty + tx + 1)$$

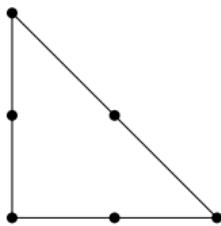
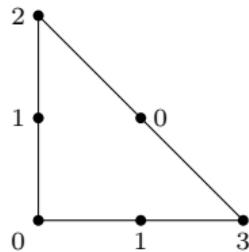
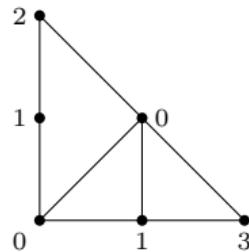


Subdivisions

Theorem (Kapranov)

Let $f \in K[x_1^{\pm}, \dots, x_n^{\pm}]$. Then $-V(\text{trop}(f))$ is dual to the induced subdivision of $\text{Newt}(f)$ by the valuation of coefficients.

$$\text{trop}((t^2 + t^5)y^2 + (4 + t^9)xy + (t^3)x^2 + ty + tx + 1)$$

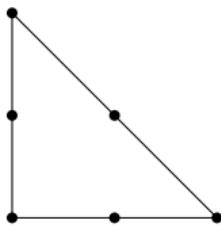
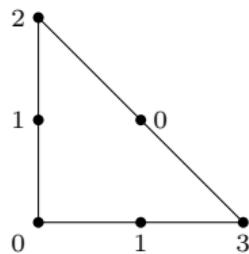
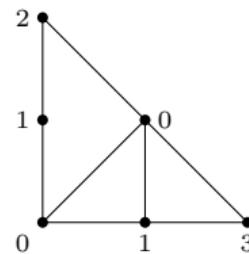
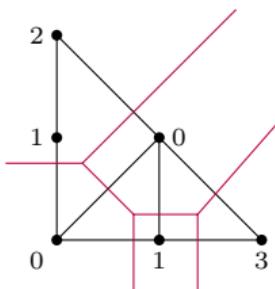


Subdivisions

Theorem (Kapranov)

Let $f \in K[x_1^{\pm}, \dots, x_n^{\pm}]$. Then $-V(\text{trop}(f))$ is dual to the induced subdivision of $\text{Newt}(f)$ by the valuation of coefficients.

$$\text{trop}((t^2 + t^5)y^2 + (4 + t^9)xy + (t^3)x^2 + ty + tx + 1)$$



Uses of tropical geometry

- Enumerative geometry
- Computational algebraic geometry
- Matroid theory

Abstract tropical geometry

Tropical Curves - Abstract

Definition

A *stable abstract tropical curve* is a metric graph

$$\Gamma = (V, E, \ell, \gamma)$$

- vertices V ,
- edges E , which contains both finite edges and half-rays we call *ends*,
- a length function $\ell : E \rightarrow \mathbb{R}_{>0} \cup \{\infty\}$
- a genus function $\gamma : V \rightarrow \mathbb{Z}_{\geq 0}$.
- each vertex has at least $3 - 2g$ outgoing edges.

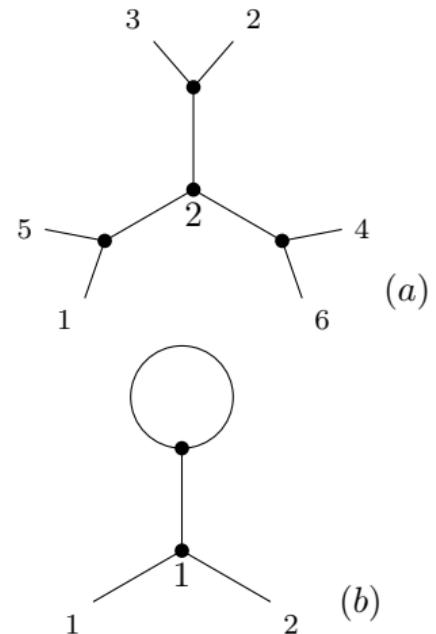
Tropical Curves - Abstract

Definition

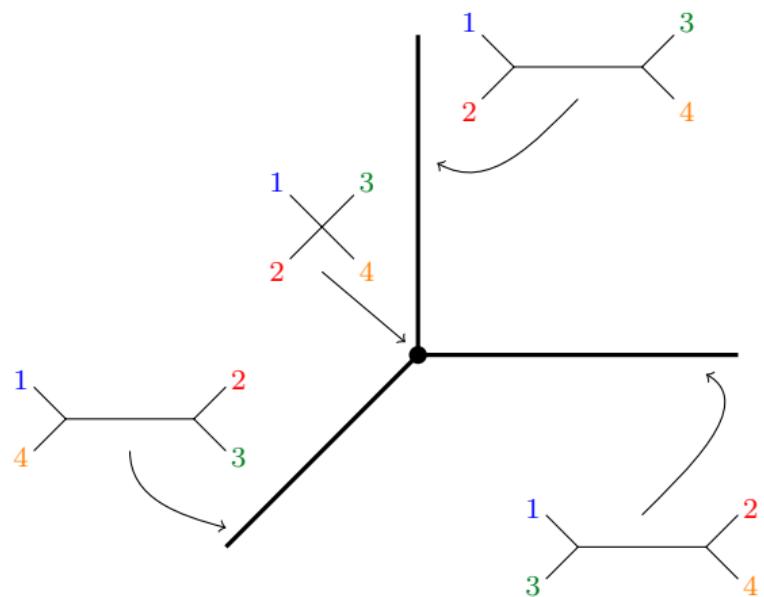
A *stable abstract tropical curve* is a metric graph

$$\Gamma = (V, E, \ell, \gamma)$$

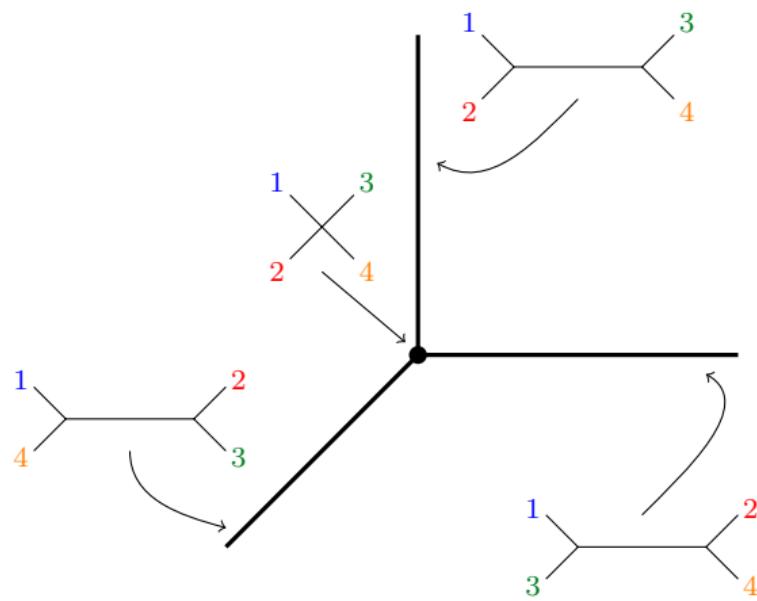
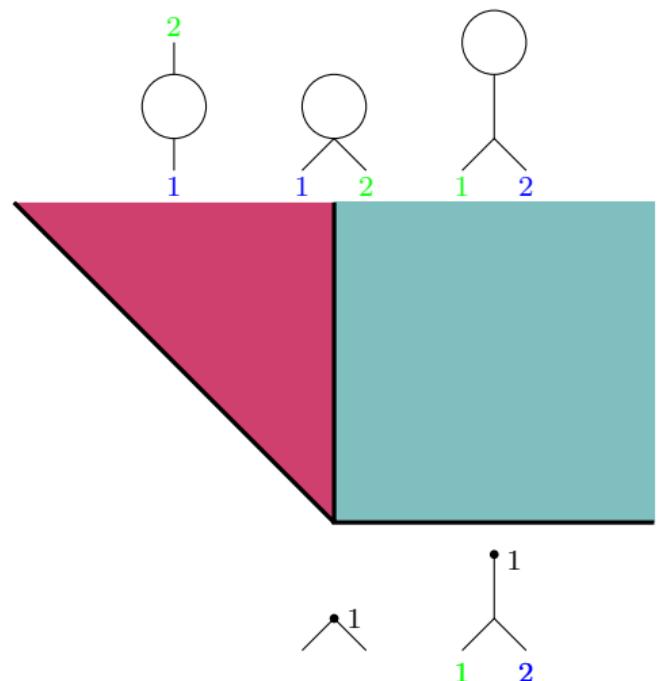
- vertices V ,
- edges E , which contains both finite edges and half-rays we call *ends*,
- a length function $\ell : E \rightarrow \mathbb{R}_{>0} \cup \{\infty\}$
- a genus function $\gamma : V \rightarrow \mathbb{Z}_{\geq 0}$.
- each vertex has at least $3 - 2g$ outgoing edges.



The moduli space of tropical curves



The moduli space of tropical curves



Tropical analogues of Teichmüller space

based on *Handlebodies, Outer Space, and Tropical Geometry*
[Ramadas-Silversmith-Vogtmann-Winarski]

$\mathcal{M}_{g,n}$ and $\overline{\mathcal{M}}_{g,n}$

Definition

$\mathcal{M}_{g,n}$ is the parameter space of smooth projective irreducible algebraic curves (Riemann surfaces) of genus g with n labelled points. It is a (quasiprojective) variety of dimension $3g - 3 + n$.

Its *Deligne-Mumford compactification* is the space $\overline{\mathcal{M}}_{g,n}$

Theorem (Many)

$\mathcal{M}_{g,n}^{\text{trop}}$ is the tropical analogue of both $\mathcal{M}_{g,n}$ and $\overline{\mathcal{M}}_{g,n}$. In particular, its structure gives a recipe to construct $\overline{\mathcal{M}}_{g,n}$

Boundary complexes

Definition

A **boundary complex** of a compact space X is a polyhedral complex whose polytopes parametrise the patterns of intersections in the boundary strata of X .

Example

$\text{Link}(\mathcal{M}^{\text{trop}_{g,n}})$ is the boundary complex of $\overline{\mathcal{M}}_{g,n} \setminus \mathcal{M}_{g,n}$.

Moduli of curves and Teichmüller spaces

Definition

The **Teichmüller space** $\mathcal{T}(S_{g,n})$ associated to an (oriented) Riemann surface $S_{g,n}$ is the space of Riemann surfaces of genus g with n points together with a marking given by a homeomorphism from $S_{g,n}$.

Its partial compactification is $\overline{\mathcal{T}}(S_{g,n})$, called the **augmented Teichmüller space**.

Theorem

$\mathcal{M}_{g,n}$ is the quotient of $\mathcal{T}(S_{g,n})$ by the mapping class group $\text{MCG}(S_{g,n})$.
Analogously, $\overline{\mathcal{M}}_{g,n}$ is the quotient of $\overline{\mathcal{T}}(S_{g,n})$ by $\text{MCG}(S_{g,n})$.

The curve complex

Definition

The curve complex $\mathcal{C}(S_{g,n})$ parametrises **multicurves**, i.e. collections of simple closed curves, on the Riemann surface $S_{g,n}$.

The curve complex

Definition

The curve complex $\mathcal{C}(S_{g,n})$ parametrises **multicurves**, i.e. collections of simple closed curves, on the Riemann surface $S_{g,n}$.

Proposition (Ramadas '25)

The curve complex $\mathcal{C}(S_{g,n})$ is the boundary complex of $\overline{\mathcal{T}}(S_{g,n}) \setminus \mathcal{T}(S_{g,n})$.

Tropicalising the correlation

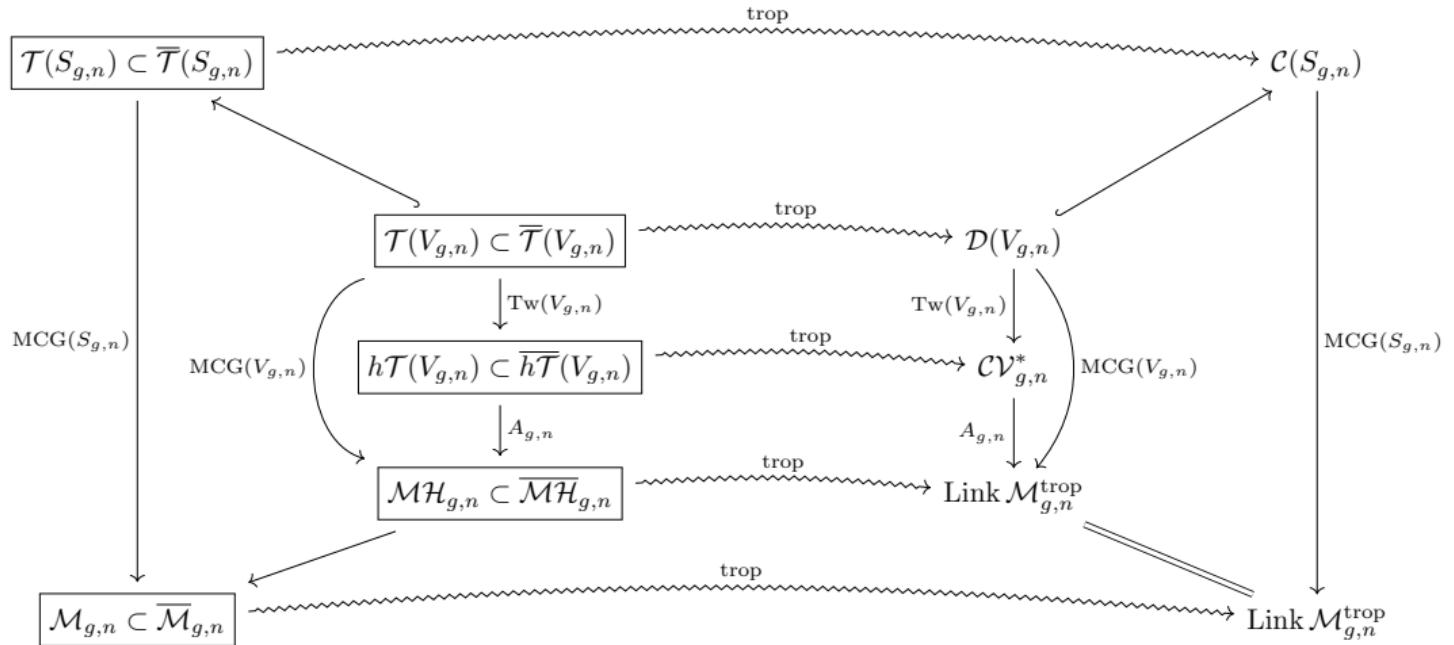
$$\begin{array}{ccc}
 \boxed{\mathcal{T}(S_{g,n}) \subset \overline{\mathcal{T}}(S_{g,n})} & \xrightarrow{\text{trop}} & \mathcal{C}(S_{g,n}) \\
 \text{MCG}(S_{g,n}) \downarrow & & \downarrow \text{MCG}(S_{g,n}) \\
 \boxed{\mathcal{M}_{g,n} \subset \overline{\mathcal{M}}_{g,n}} & \xrightarrow{\text{trop}} & \text{Link } \mathcal{M}_{g,n}^{\text{trop}}
 \end{array}$$

Cheat sheet

$$\begin{array}{c|c|c}
 \mathcal{T}(S_{g,n}) & \text{MCG}(S_{g,n}) & \mathcal{M}_{g,n} \\
 \text{Teichmüller space} & \text{Mapping class group} & \text{Moduli space of curves}
 \end{array}$$

$$\begin{array}{c|c}
 \text{Link } \mathcal{M}_{g,n}^{\text{trop}} & \mathcal{C}(S_{g,n}) \\
 \text{Moduli space of tropical curves with edge-length 1} & \text{Curve complex of } S_{g,n}
 \end{array}$$

The bigger picture [Ramadas-Silversmith-Vogtmann-Winarski]



Our Observation

Graphs of measured foliations behave a lot like tropical Hurwitz covers.