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Abstract. We defined a new set of coordinates with respect to which the Thurston compactifi-

cation of Teichmüller space is the radial compactification of Euclidean space.

The seminal work [7] of Thurston uses lengths of simple closed curves on a surface to define a

compactification of its Teichmüller space. Let S be the set of isotopy classes of essential simple closed

curves on a closed orientable surface Σ of genus g ≥ 2. Throughout this paper a measured foliation

is a transversally measured singular foliation on a surface. A hyperbolic metric and a measured

foliation on Σ each assign a length to each element of S. Both then determine a projectivized length

function on S, leading to Thurston’s famous [7] compactification of the Teichmüller space T (Σ).

As depicted to the right, let {αi} denote a set of pairwise disjoint

simple closed curves on Σ whose complement is a disjoint union of 3-

holed spheres (pants). Fenchel-Nielsen coordinates on T (Σ) assign a

length and twist parameter to each αi. Dehn-Thurston coordinates use similar data to parameterize

measured foliations. In both cases the length is positive, or possibly zero in the case of measured

foliations, but the twist is an arbitrary real number. The collar parameter (CP) coordinates we

define here assign a point in R2 to each αi. They are a variant of the Fenchel-Nielsen and Dehn-

Thurston coordinates (the relationship is in Proposition 4.1), and encode both the length and the

twist parameters.

Using the CP coordinates on a Teichmüller space, the Thurston compactification is just the

radial compactification of Euclidean space. The same result does not hold using Fenchel-Nielsen

coordinates, as is apparent by considering sequences where all twist parameters are zero and the

lengths of the αi go to zero at various rates. For such a sequence the parameters converge to the

origin, and the limit in the Thurston boundary depends on the direction of approach to the origin.
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We now describe CP coordinates. In what follows the term structure means either a hyperbolic

metric or a measured foliation on Σ. Each αi is contained in an annulus Ai that in some sense is

maximal in the structure. In a hyperbolic structure, Ai is provided by the

Collar Lemma [1]. For measured foliations, Proposition 1.4 shows that each

measured foliation is equivalent to one such that either ∂Ai is transverse to

the foliation (upper left image), or else Ai is a union of smooth closed leaves such that the union of

the closed leaves isotopic into Ai, that are in the complement of Ai, have zero transverse measure

(upper right image). Such a maximal annulus in either structure is called a standard collar.

Given a structure on Σ and pair of pants in a pants decomposition,

there is a structure-preserving reflection of the pants whose fixed point

set consists of three arcs, one arc connecting each pair of boundary com-

ponents. The arcs are called seams. Each annulus Ai has two basepoints

on each of its boundary components given by the intersection with the

seams of the pants decomposition (depicted using orange dots). CP coordinates parameterize struc-

tures on the annulus up to isotopy fixing the basepoints. We triangulate the annulus using these

basepoints, two arcs β and γ connecting them, plus three meridian circles

around the annulus (image to the left). The structure on the annulus is

determined by the lengths of the sides of a triangle in this triangulation

(a,b,c in the image). An equation relates these lengths, giving a parameter

space R2 with coordinates that are certain linear combinations of edge lengths. This parameter

space is the space of collar parameters, and is described in §1.2. It is a pleasant fact that for both

structures the equation is symmetric in the three edge lengths.

In the hyperbolic case, the curves {αi} are geodesics and separate Σ into

hyperbolic pants. Deleting the interiors of the annuli results in subsurfaces

called shorts. The boundary components of the shorts are hypercycles

(curves equidistant from a geodesic). Every point in the shorts is within

distance cosh−1(3) of the boundary.

The intersection of a seam of the pants with the shorts is the unique geodesic arc in the shorts

connecting that pair of boundary components and meeting them orthogonally. These arcs are called

the seams of the shorts. The shorts are determined up to isometry by the data for the annuli.
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Gluing the shorts to the annuli so that the basepoints on the annuli are endpoints of seams (see

§1.3) parameterizes Teichmüller space by a product of parameter spaces for the annuli.

A similar procedure works for measured foliations. Each measured foliation on the annulus is

linear (see §1.5). The measured foliations on the shorts are determined solely by the measure

(length) of the boundary components. Again there are seams: the fixed points of a reflection that

preserves the transverse measure. These foliations yield a global parametrization of the space of

measured foliations on Σ, as a product of the parameter spaces for the annuli.

This gives the parameterizations ΘT : R6g−6 → T (Σ) of the Teichmüller space T (Σ), and

ΘMF : R6g−6 → MF(Σ) of the space MF(Σ) of measured foliations, using CP coordinates. Since

both sets of coordinates are determined by the lengths of the same sides of the same triangles the

homeomorphism ΘT ◦Θ−1
MF , sending a measured foliation to a hyperbolic metric, is a good approx-

imation for large foliations. This works so well because most of the length of a geodesic (after a

small perturbation), and all the measure of the measured foliation, is concentrated in the collars.

A hyperbolic torus with a geodesic boundary component can be obtained

by identifying two boundary components of a hyperbolic pair of pants that

have the same length (α in the image). The limit, as the length of the torus’

boundary component goes to zero, is a complete hyperbolic once-punctured

torus T with finite area 2π. Because of the choice of the depth of a standard collar, for any standard

collar A containing a closed geodesic α, there is such a T that contains an isometric image of the

interior of A and exactly two points, one on each (purple) boundary component of A, are identified

to a single point p in T . Twisting along α produces a one-parameter family of such tori. A geodesic

arc crossing A and with these endpoints gives a geodesic loop β in T that contains p. There is

another loop γ such that α, β, γ are three closed geodesics in T that pairwise-intersect precisely

once. With suitable orientations, we have α · β · γ = 1 ∈ π1T .

These closed geodesics contain the three edges of a triangle in the triangulation of A, hence define

the collar parameters. More precisely, the length of a triangle edge is half that of the geodesic loop

containing it. The commutator [α, β] is parabolic. The formula for the trace of this parabolic,

expressed in terms of the lengths of α, β, and γ, gives the equation relating the edge lengths in

a standard collar. One may thus regard the collar parameters of a standard collar as a point in

the Teichmüller space of finite area complete hyperbolic metrics on T . The collar parameters are
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a projection of T (Σ) onto the product of 3g − 3 copies of T (T ). Similarly for measured foliations.

Thus the projection from MF(S) to T (S) factorises as a product of projections from MF(T ) to

T (T ).

A quadratic differential on a surface is a section of the symmetric square of the cotangent bundle.

Thus a Riemannian metric is a quadratic differential that is a quadratic form of rank 2, e.g. 3dx2 +

dxdy + 5dy2. Also a measured foliation corresponds to a quadratic differential that is a quadratic

form of rank ≤ 1, e.g. the quadratic differential (2dx − 3dy)2 corresponds to a measured foliation

with leaves 2x− 3y = const. The term holomorphic is conspicuously absent.

Given v ∈ R6g−6 with |v| ≤ 1 one can write down an explicit quadratic differential on Σ that

varies continuously with v. When |v| < 1 this quadratic differential is a rescaling of a hyperbolic

metric with collar parameters v/(1−|v|). For |v| = 1 it is a measured foliation with collar parameter

v. As such, the Thurston compactification of the Teichmüller space T (Σ) is realized as a subspace

of the space of quadratic differentials Q(Σ) on Σ.

Theorem A bounds the difference between the length of an isotopy class of a loop in a hyperbolic

metric and in the measured foliation corresponding to the metric via ΘMF ◦ Θ−1
T . The bound is

in terms of the minimum word length in the conjugacy class for the loop. This implies Theorem

B concerning the compactification. These theorems follow from a stronger result that compares

pointwise the hyperbolic metric and corresponding measured foliation after isotoping these struc-

tures into a nice position. This culminates in Theorem C, which lifts both a Teichmüller space

and the corresponding space of measured foliations to spaces of quadratic differentials where the

Thurston compactification arises from (rescaled) quadratic differentials, rather than isotopy classes

of structures.

Some related work & further questions

In [4] Hensel and Sapir define a projection π from the space of filling geodesic currents on a closed

surface Σ to its Teichmüller space.

Question 0.1. Can π be written in terms of the CP coordinates?

One can ask further questions as to whether the CP coordinates can simplify computations

and give further insights into other structures related to a Teichmuller space, such as the tropical

boundary [6] and modular structures [5] of Luo, and the cluster algebras of Fock-Goncharov [3].
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1. Collar parameters

In what follows, Σ is a closed orientable surface of genus g ≥ 2 and a structure is either a

hyperbolic metric or a measured foliation on Σ.

To provide a common frame of reference for the structures, we fix a triangulation of a standard

annulus as follows (Figure 1). Define the circle S1 := R/2Z, and standard annulus A := S1× [−1, 1].

Figure 1. (a) The left image is a triangulation of a fundamental domain for the
standard annulus A = S1 × [−1, 1] with the reference triangle shaded. The base-
points are in orange. (b) The right image shows α, β, γ. With a hyperbolic metric,
the purple boundary curves are hypercycles.

The universal cover of the standard annulus is Ã = R× [−1, 1] ⊂ R2. Let p : R× [−1, 1] → A be the

covering map. The subset [−1, 1]2 of Ã is a fundamental domain. Triangulate [−1, 1]2 with eight

Euclidean triangles as shown in Figure 1a. Their images under p give a triangulation of A. This

triangulation contains a reference triangle with sides that are sa = p([0, 1]× 0) and sb = p(1× [0, 1])

and sc = p({(t, t) : 0 ≤ t ≤ 1}). There are two basepoints on each component of ∂A; they are

p(1,±1), and p(0,±1).

In the following we explain how a suitable triple (a, b, c) determines a hyperbolic metric or a

measured foliation on the reference triangle. Using the triangulation of Figure 1, we then define,

respectively, a hyperbolic metric or measured foliation on the standard annulus.

1.1. Hyperbolic collars. A hyperbolic collar is an annulus A endowed with a hyperbolic metric so

that A contains a simple closed geodesic α and each point of ∂A is a fixed distance d from α.

( )

(   )

Thus ∂A consists of two hypercycles. The number d is called the depth of the

collar. A hyperbolic collar whose core geodesic has length 2a is a standard collar

if it has depth κ(a) = sinh−1(1/ sinh(a)).

The Collar Lemma, see [1], says that disjoint closed geodesics in a hyperbolic surface are contained

in disjoint standard collars.
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A hyperbolic collar will end up being standard if and only if the side lengths of the geodesic

reference triangle in the triangulation just described satisfy the collar equation, as first introduced

in Lemma 1.1:

Lemma 1.1 (collar equation). Suppose S is a hyperbolic collar and the length of the core

geodesic is 2a. Then the edge lengths (a, b, c) of the geodesic reference triangle satisfy

(1) cosh2 a+ cosh2 b+ cosh2 c = 2 cosh a cosh b cosh c.

if and only if S is standard.

In light of Lemma 1.1, we define the collar equation:

Definition 1.2 (collar equation). We say a point in R3 satisfies the collar equation if it is in the set

(2) H = {(a, b, c) : cosh2 a+ cosh2 b+ cosh2 c = 2 cosh a cosh b cosh c & a, b, c > 0}.

The set H is the left-hand image in Figure 2. It sits inside the cone from the origin on the

triangle in the plane x + y + z = 2 with vertices the points (1, 1, 0) and (1, 0, 1) and (0, 1, 1). It

is asymptotic to the sides of this cone. The intersections of H with the planes x + y + z = C are

convex curves becoming larger and more nearly triangular as C increases. This is depicted on the

right for C = 3, 4, 5.

Out[]=

Out[]=
-2.0 -1.5 -1.0 -0.5 0.5 1.0

-2

-1

1

2

Figure 2. (a) on the left is H and (b) on the right are some cross sections of H.
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Given (a, b, c) ∈ H there is a unique hyperbolic metric hyp(a, b, c) on A =

S1 × [−1, 1] satisfying simultaneously each of the following properties.

1. Endowed with the metric hyp(a, b, c), the annulus A is isometric to a

standard collar with core curve of length 2a.

2. The metric hyp(a, b, c) is preserved by rotation of the S1 factor. In particular, the curve

α : [−1, 1] → A given by α(t) = p(t, 0) is a constant speed geodesic.

3. The curve β : [−1, 1] → A given by β(t) = p(−1, t) is a geodesic of speed b and length 2b.

4. There is a geodesic γ : [−1, 1] → A of length 2c and homotopic rel endpoints to t 7→ p(t, t).

Rotational invariance implies each S1 × y is a hyper-

cycle and has constant speed. Half the length of each

boundary component of A is h = a coth(a). The sides sa

and sb of the reference triangle are hyperbolic geodesics,

but the third side sc is not. The geodesic reference triangle is the triangle in A with sides α[0, 1],

and β[0, 1], and γ[0, 1]. It has geodesic sides and is isotopic to the reference triangle without moving

the vertices. It is clear that a standard triangulation of a standard collar can be isotoped without

moving the basepoints to be the metric hyp(a, b, c) just described. We call such a metric standard.

The next result implies the distance between nearby points in a standard metric on an annulus

differs from that given by a linear measured foliation by at most
√
2 times the Euclidean distance.

Lemma 1.3. The metric hyp(a, b, c) on A pulls back using the covering space projection p to the

metric on Ã = R× [−1, 1] given by

ds2 =

(
a2 +

( a

sinh a

)2( sinh(by)

sinh b

)2
)
dx2 ± 2ab

√
1−

(
1

sinh a sinh b

)2

dxdy + b2dy2.

The sign is +1 if cosh c ≥ cosh a cosh b. Hence

|ds2 − (a.dx± b.dy)2| ≤ 2(dx2 + dy2).

1.2. Triangle lengths and collar parameters. Let π : R3 → R2 be the linear map defined by

π(a, b, c) = (4a− 2b− 2c, 2b− 2c).
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This is the composition of orthogonal projection of R3 onto the subspace given by a + b + c = 0,

followed by an isomorphism to R2. This particular isomorphism was chosen so that simple closed

curves, thought of as measured foliations, map to integer points. The numbers (a, b, c) are called the

triangle lengths and (x, y) = π(a, b, c) are the collar parameters. It is routine to check that the map

πH = π|H : H → R2 is a homeomorphism, so the collar parameters determine the triangle lengths.

1.3. Shorts decomposition. Suppose A = {αi : 1 ≤ i ≤ 3g − 3} is a set of disjoint simple closed

curves in Σ such that the closure of each component of Σ \ A is a pair of

pants. Then there are 2g − 2 complementary components.

Let AN = {Ai : 1 ≤ i ≤ 3g − 3} be a set of pairwise disjoint compact

annuli in Σ such that Ai is a neighborhood of αi for each i. Let SH be

the closure of Σ \
⋃
AN. Then SH =

⋃
{Sj : 1 ≤ j ≤ 2g− 2}, where each

Sj is called a pair of shorts, and is a pair of pants with annular neighborhoods of the boundary

components removed. D = (SH,AN) is called a shorts decomposition of Σ.

Next we define a marked shorts decomposition by adding to the above a certain family of arcs

in the shorts Sj and annuli Ai. We choose some disjoint arcs in the shorts,

called seams, such that there is exactly one seam connecting each distinct pair of

boundary components in each shorts. The endpoints of the seams consist of two

points on each boundary component of each Ai. These are the basepoints. Now, for each

annulus Ai, choose a homeomorphism to the standard annulus A so that the basepoints

are sent to vertices of the standard triangulation of the annulus. The marking on D

consists of the seams in the Sj , together with the arcs sa, sb, sc in each annulus Ai.

We emphasize that in this discussion there is no geometry: metric or measure.

Subsequently we will put certain hyperbolic metrics onto Σ in such a way that the seams and sa

and sb are all geodesic arcs, but the sc are not geodesics.

1.4. Parameterizing Teichmüller space. The collar parameters determine hyperbolic metrics

on the annuli and on the shorts. These fit together as dictated by the marked shorts decomposition.

This determines a hyperbolic metric on Σ and a parameterization

Θ−1
T :

∏
R2 −→ T (Σ).
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1.5. Parameterizing measured foliations. Our point of view is that a measured foliation |ω| is

determined by a 1-form ω. We consider two measured foliations equivalent that determine the same

length functions on S. If ω = 0 on a subsurface then the foliation on that subsurface will not be

important. The discussion below follows the terminology of [2, Section 6.2]. We wish to concentrate

the transverse measure in the annuli. We will define a standard measured foliation on shorts and

on an annulus. Fix a shorts decomposition of the surface Σ. Then a measured foliation on Σ is

standard if the restriction to each shorts and each annulus is standard. It follows from [2] that:

Proposition 1.4. Every measured foliation on a surface is equivalent to a standard one.

Let P be shorts with boundary components δ1, δ2, δ3 (in [2] the corresponding boundary com-

ponents are called γ1, γ2, γ3). Given m1,m2,m2 ≥ 0 we define a standard measured foliation on

P satisfying that the length of δi with respect to the transverse measure is mi. Except for the

case of (m1,m2,m3) = (0, 0, 0) the leaves of the foliation are shown in [2, Figure 6.6], but modified

as follows. If mi = 0 then an annular neigborhood of δi is foliated by smooth circles, and with

transverse measure zero. The result is shown in Figure 3.

Figure 3. Possible foliations on the shorts [2, Figure 6.6]: from left to right these
are where m1 + m2 + m3 > 2max{m1,m2,m3}, and m1 = m2 + m3, and m1 >
m2+m3, and m1 = m3,m2 = 0, and m1 > m3,m2 = 0, and m1 > 0,m2 = m3 = 0.

The remaining case of (m1,m2,m3) = (0, 0, 0) is shown in Figure 4.

Figure 4. The measured foliation in the case of m1 = m2 = m3 = 0 on shorts
(left) and pants (right). The line of reflection in the shorts is the blue dotted line.



10 DARYL COOPER AND CATHERINE EVA PFAFF

In each case there is an automorphism of the shorts P that is a reflection that fixes the union of

three arcs, one connecting each pair of boundary components, and that is measure preserving.

It remains to define standard measured foliations on annuli. They are given by a linear 1-

form. There are two kinds, depending on whether the leaves are circles, or arcs connecting the two

boundary components. In the first case the transverse measure might be zero.

Definition 1.5 (triangle equality). A point v ∈ R3 satisfies the triangle equality if it is in the set

(3) ∆ = {(a, b, c) : a+ b+ c = 2max{a, b, c} & a, b, c ≥ 0}.

This is the cone from 0 on the boundary of a 2-simplex. Figure 2 shows how the subset H of

R3 sits inside ∆ like a hyperboloid inside its lightcone: they are asymptotic at infinity. Moreover

π|∆ : ∆ → R2 is a homeomorphism.

A measured foliation µ on A is linear if covered by a measured foliation |df |

on Ã ⊂ R2 given by the restriction of a, possibly identically zero, linear map

f : R2 → R. A Euclidean line segment in A is either transverse to the foliation,

or else contained in a leaf. We assign lengths (a, b, c) to the sides of the reference

triangle in A by integrating |df | along each side. Then (a, b, c) ∈ ∆ and h = a. We again refer to

π(a, b, c) ∈ R2 as collar parameters, and they determine these lengths for measured foliations.

Thus, as just described here and in §1.1, a collar parameter p ∈ R2 gives rise to both a measured

foliation and a hyperbolic metric on A.

Given edge lengths v = (a, b, c) ∈ ∆, if c ≥ max(a, b) then

c = a+ b (leftmost foliation in the image), otherwise c = |a− b|

(middle is where a = b + c, right is where b = a + c). Let

mf(v) be the linear measured foliation on A that assigns lengths a, b, c to the standard unit vectors

e1, e2, e1 + e2 respectively. Then mf(v) lifts to a measured foliation |ωv|, where ωv is the 1-form on

R2 given by

(4) ωv =

 a.dx+ b.dy c = a+ b

a.dx− b.dy c = |a− b|
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The figure to the left above shows a foliation on R2 such that ωv vanishes on the tangent spaces of

the leaves. When v = 0 we define the leaves to be the circles given by ker dy.

An assignment of a point in π(∆) = R2 to each annulus in an annulus-shorts decomposition of Σ

determines a measured foliation on Σ and yields a parametrization

Θ−1
MF :

∏
R2 −→ MF(Σ).

1.6. CP maps. The collar parameters on a Teichmüller space and space of measured foliations are

the maps ΘT = (Θ−1
T )−1 : T (Σ) → R6g−6 and ΘMF = (Θ−1

MF )
−1 : MF(Σ) → R6g−6. The map

m = Θ−1
MF ◦ Θ−1

T : T (Σ) → MF(Σ) is called the foliation map, and the inverse m−1 : MF(Σ) →

T (Σ) the hyperbolization map.

2. The Thurston compactification is the Radial Compactification

Suppose that ds is a positive semi-definite quadratic form on Σ. There is a length function

L(ds) : S → R

defined as follows. Given an element σ of S then

(L(ds))(σ) = inf

∫
γ

ds

where the infimum is taken over all simple closed curves γ in the isotopy class σ. We are interested

in applying the length function to ds, when it is given either by a hyperbolic metric, or by a

transversally measured foliation on Σ.

Choose a finite symmetric generating set W ⊂ π1(Σ). Set W 1 = W and Wn+1 = {x.y : x ∈

W, y ∈ Wn}. For g ∈ π1Σ, define w : π1Σ → Z by w(g) = min{n : ∃h ∈ π1Σ with hgh−1 ∈ Wn}.

The number w(g) is the conjugacy (or cyclically reduced) word length of g and is the minimum

length on the alphabet W conjugate to g. If v ∈ R6g−6, then the hyperbolic structure, Θ−1
T (v), and

measured foliation, Θ−1
MF (v), give length functions on S that differ by less than a fixed multiple of

the word length:
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Main Theorem A. Given a conjugacy word length w on π1Σ, there is a constant C > 0 such that

the foliation map m : T (Σ) → MF(Σ) satisfies:

∀ τ ∈ T (Σ) | L(τ)− L(m(τ)) | ≤ C · w.

Sketch proof. A hyperbolic geodesic can be isotoped to be a piecewise geodesic, δ, consisting of

geodesic segments that are alternately in shorts and collars. Moreover δ is a (K,L)-quasi-geodesic

with the constants K,L independent of the point in T (Σ). The length of each segment of δ in each

shorts is uniformly bounded, since every point in a shorts is within cosh−1(3) of the boundary. This

relies on some beautiful properties of standard collars. The majority of the length of δ is in the

collars. The number of segments in δ is bounded by a multiple of its conjugacy word length. Lemma

1.3 shows that on a standard collar the hyperbolic metric differs from a measured foliation by a

bounded amount independent of the point in T (Σ). □

Using the embedding Rn ↪→ Rn given by v 7→ v/(1 + ∥v∥), the radial compactification of Rn is

the unit ball B = {v ∈ Rn : ∥v∥ ≤ 1}. The Thurston compactification is T (Σ) = T (Σ) ⊔ P(MF).

Since Θ−1
MF (tv) = t · Θ−1

MF (v) for each t > 0, it follows from Theorem A that the length functions

t−1L(Θ−1
T (tv)) converge to the length function of Θ−1

MF (v) provided v ̸= 0.

Main Theorem B. Using ΘT coordinates to identify T (Σ) ≡ R6g−6, the Thurston compactification

is the radial compactification of R6g−6: if 0 ̸= v ∈ R6g−6, then limt→∞ Θ−1
T (tv) = [Θ−1

MF (v)] ∈ T (Σ).



COLLAR PARAMETERS FOR TEICHMÜLLER SPACE & MEASURED FOLIATIONS ON A SURFACE 13

3. Realizing the compactification with quadratic differentials.

Suppose ds0 is some Riemannian metric on Σ, not necessarily hyperbolic, called the background

metric. We show that, after a suitable isotopy, a hyperbolic metric on Σ differs from some measured

foliation on Σ by less than a fixed multiple of ds0. Then integration along geodesics shows that the

length functions with respect to the hyperbolic metric and measured foliation are close, provided

these geodesics are not too long in the background metric. We formalize this with the following.

A seminorm ds on Σ is C-efficient with respect to the background metric ds0 if for each g ∈ π1Σ

there is a ds-geodesic α : S1 → Σ that is freely homotopic to a loop representing g, and ℓ(α, ds0) ≤

C ·w(g). A set of seminorms N is uniformly efficient if there is a C > 0 such that all the seminorms

in N are C-efficient.

Since Σ is compact any two background metrics are bilipschitz equivalent. Thus whether or not

a set of seminorms is uniformly efficient does not depend on the choice of background metric.

The space of quadratic differentials Q(Σ) on Σ contains the subspace, T̃ (Σ), of hyperbolic metrics

and the subspace, M̃F(Σ), of measured foliations. There are natural projections πT : T̃ (Σ) → T (Σ)

and πMF : M̃F(Σ) → MF(Σ), and πT is a fiber bundle with fiber the group of diffeomorphisms

isotopic to the identity. These maps have sections:

Main Theorem C (Efficient Realization Theorem). Suppose Σ is a closed orientable surface with

genus at least 2. Then there are embeddings Θ̃−1
T : R6g−6 → T̃ (Σ) and Θ̃−1

MF : R6g−6 → M̃F(Σ)

such that Θ−1
MF = πMF ◦ Θ̃−1

MF and Θ−1
T = πT ◦ Θ̃−1

T , with Θ̃−1
T (tv) = t Θ̃−1

T (v) for each t ≥ 0 and

v ∈ R6g−6. Moreover, given a background metric ds0 on Σ, there is a C = C(ds0) > 0 so that the

image of Θ̃−1
MF and of Θ̃−1

T are uniformly efficient and

(5) ∀v ∈ R6g−6 | Θ̃−1
T (v)− Θ̃−1

MF (v) | ≤ C · |ds0|.

To define Θ̃−1
MF and Θ̃−1

T involves writing down explicit metrics and measured foliations on shorts

that match standard metrics on collars along the boundary.
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4. Converting between Collar Parameters and Fenchel-Nielsen coordinates

We provide here the coordinate change maps between the CP coordinates we have defined, and

the classical Fenchel-Nielsen coordinates on a Teichmüller space and Dehn-Thurston coordinates for

the corresponding space of measured foliations.

Proposition 4.1. Suppose (2ℓ, 2τ) ∈ R+ × R are the Fenchel-Nielsen coordinates of a point in

Teichmüller space. [8]. Then the triangle lengths (a, b, c) are given by

(6)

a = ℓ, and

b = cosh−1(cosh τ coth ℓ), and

c = cosh−1(cosh(ℓ− τ) coth ℓ).

The collar parameters are given by

(7)
x = 4ℓ− 2 cosh−1 (cosh τ coth ℓ)− 2 cosh−1 (cosh(ℓ− τ) coth ℓ) and

y = 2 cosh−1(cosh τ coth ℓ)− 2 cosh−1(cosh(ℓ− τ) coth ℓ).

If (2ℓ, 2τ) ∈ R≥0 × R are Dehn-Thurston coordinates of a point in the space of measured foliations

[6] then the triangle lengths (a, b, c) are given by

(8)

a = ℓ, and

b = |τ |, and

c = |ℓ− τ |,

and the collar parameters by

(9)
x = 4ℓ− 2|τ | − 2|ℓ− τ | and

y = 2|τ | − 2|ℓ− τ |.

If ℓ is large then coth ℓ ≈ 1. Observe that replacing coth ℓ by 1 in (6) yields (8).

5. The collar equation and Teichmüller space of a once-punctured torus

The collar equation is also the equation of the character variety for the Teichmüller space of finite

area hyperbolic structures on a once-punctured torus T . This follows because the worst case for a

standard collar is given by T , where there is a single self intersection point on the boundary of a
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standard collar. This point determines a reference triangle in T and this triangle determines the

metric on T up to isotopy. Here are some of the details.

Refer to Figures 5 and 6. First we argue that for a right-angled finite area hyperbolic punctured

torus that the depth of a maximal collar is given by κ. This is because the collar equation corresponds

to the trace relation for the commutator as we explain below.

Let D be an ideal quadrilateral in H2 such that the common perpendiculars, A and B, to op-

posite sides of D are orthogonal. Then there is an a ∈ R>0 so that the lengths of these common

perpendiculars are 2a and 2κ(a). Now D is a fundamental domain for a hyperbolic metric on T .

This is obtained by identifying the opposite sides of D using isometries that translate along the

common perpendiculars. The image of A in T is a simple closed geodesic α. The standard collar of

α meets itself at one point p, that is the image of the endpoints of B. The image of B is a closed

geodesic β on T orthogonal to α at a point q. There is a third closed geodesic γ on T containing p

and r and homotopic to the product of α and β in π1(T, p). The point r is shown in Figure 5. Then

the reference triangle has side lengths a, b, c that are the half-lengths of the geodesics α, β, and γ.

~

(   )

(   )

~

~

Figure 5. (a) The left image is an ideal quadrilateral D in H2 such that the
common perpendiculars, A and B, to opposite sides of D are orthogonal. The two
κ(a)-hypercycles are depicted in purple. (b) The right image is the punctured torus
obtained by identifying the opposite sides of D using isometries that translate along
the common perpendiculars. α is the image of A and β is the image of B. The
image of the κ(a)-hypercycles correspond to the standard annulus boundary image.

If A,B ∈ SL(2,R) are the holonomies of α and β, respectively, then C = AB is the holonomy of

γ. The Markov-Fricke trace relation is

tr[A,B] = (trA)2 + (trB)2 + (trC)2 − trA trB trC − 2.

For a finite area punctured torus, and A, B as above, tr[A,B] = −2. The relationship trA =

2 cosh a between the trace and half the translation length now yields the collar equation in this case.
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The hyperbolic structure on T has the property that α and β are orthogonal. Any finite area

structure on T can be obtained from some such a pair α, β by an earthquake à la Fenchel-Nielsen

along α by some distance. One can picture the triangulation on the resulting structure by cutting

D along A and sliding the bottom half sideways, see Figure 6. The geodesic B is replaced by the

geodesic connecting p and the image p′ of p under the sideways slide. It follows that the standard

collar of α in the resulting structure still has a single point of self intersection. Thus performing an

earthquake does not change the depth of a maximal collar.

Figure 6. An earthquake does not change the maximal collar depth.

Proposition 5.1. Let T be a once-punctured torus and α, β a generating set for π1(T ). Let T (T )

denote the Teichmüller space of finite area hyperbolic metrics on T . Then there exists a homeomor-

phism H : T (T ) −→ H so that H(ρ) = (a, b, c) are half the lengths of geodesic representatives of α,

β, and α.β respectively.

Acknowledgements. We are grateful to Joseph Maher and Lee Mosher for helpful discussions and

to Chi Cheuk Tsang for his careful reading of an earlier draft. We are grateful to the referees. The

second author is grateful to the Institute for Advanced Study for their hospitality and Bob Moses

for supporting her membership.

Funding. This research was supported by research funds granted by a Ky Fan Visiting Assistant

Professorship, a Queen’s University Research Initiation Grant, and an NSERC Discovery Grant and

Discovery Launch Supplement.

Conflicts of interest. The authors declare that they have no affiliations with or involvement in

any organization or entity with any financial interest or nonfinancial interest in the subject matter

or materials discussed in this article.
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